Two-stage Bayesian processes for spatially varying condition states

by

Marc A. Maes
Markus Dann

University of Calgary, Canada
Content

- Spatially distributed processes
- Condition states
- One-stage Bayesian models
- Two-stage Bayesian models
- Numerical example
- Conclusion
Spatially distributed processes

Process with spatial characteristics

Process can be characterized by (unobservable) condition states θ
Spatially distributed processes

Process with spatial characteristics

Set of n related systems

Process can be characterized by (unobservable) condition states θ

For each system we have response or observation X_i

X_i depends on condition state θ_i
Condition states

Features of condition states:
- represented by a random variable or a vector of random variables
- discrete (e.g. indicators) or continuous (e.g. this paper)
- cannot be “measured” or “observed”
- can be both descriptive and abstract in nature
- characterize:
 * “quality” of a process
 * measure of “past and present performance”
 * speed and extent of a process
 * “exposure”
One-stage Bayesian models

Using single CS

\[X_1 \ldots X_n \]

System

\[X_1 \ldots X_i \ldots X_n \]
One-stage Bayesian models

Using single CS – update the CS

System

\[X_1 \quad \ldots \quad X_i \quad \ldots \quad X_n \]

\[\theta \mid X \]

\[\propto \prod_{i=1}^{n} f(x_i \mid \theta) \]
One-stage Bayesian models

Using independent CS

CS

θ_1

θ_i

θ_n

System

X_i

X_i

X_n
Using independent CS – update the CS

One-stage Bayesian models
Two-stage Bayesian models

exchangeable CS

Hyper-parameters

CS

System

$\theta_1 \quad \ldots \quad \theta_i \quad \ldots \quad \theta_n$

$X_1 \quad \ldots \quad X_i \quad \ldots \quad X_n$
Two-stage Bayesian models

exchangeable CS – update CS θ_0

Hyper-parameters

CS

System

X_1, ..., X_0, ..., X_n

X^*
Two-stage Bayesian models

exchangeable CS – update a new system with unknown CS θ_{n+1}

Hyper-parameters $\alpha | X$

CS

System

θ_1, \ldots, θ_i, \ldots, θ_n, θ_{n+1}

X_1, \ldots, X_i, \ldots, X_n
Two-stage Bayesian models

correlated CS

Hyper-parameters

\[\alpha \]

CS

\[\theta_1 \quad \ldots \quad \theta_i \quad \ldots \quad \theta_n \]

System

\[X_1 \quad \ldots \quad X_i \quad \ldots \quad X_n \]
Two-stage Bayesian models

correlated CS – update CS θ_0

Hyper-parameters

System

X_1 ... X_0 ... X_n
Example
exchangeable CS

• Wind farm with 10 wind turbines
• Each turbine i suffers a number X_i of component failures or breakdown each year
• X_i depends on a mean annual failure rate θ_i
• After the first year of operation, x_i is observed
• CS is updated by using one and two-stage Bayesian models
• X_i and hyper-parameter are discrete
• CS is continuous
Example
exchangeable CS

Posterior condition states

- 1-stage Bayes, single CS
- 1-stage Bayes, multiple CS's
- 2-stage Bayes

Wind turbine

Expected CS

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7

2nd International Forum on Engineering Decision Making
Lake Louise, Canada – April 2006
Example
exchangeable CS

Posterior Probability of exceeding a critical CS $\theta_{crit}=3.0$

- 1-stage Bayes, single CS
- 1-stage Bayes, multiple CS's
- 2-stage Bayes
One-stage Bayesian models:
• Either considers only a global CS for the entire process,
• Or, treats all systems as local and fully independent
→ are not an adequate technique for spatially distributed processes

Two-stage Bayesian models:
• independent condition states
• correlated CS, but computationally difficult
→ are more efficient, but computationally more challenging

Conclusion