Structural Design Standards in the Context of Decisions in Civil Engineering

A South African view as a special case of international development

Johan Retief and Peter Dunaiski
Context of Structural Design Standards

• **Structural design** is but one of the steps in the life cycle of Civil Engineering Works
 – need & project identification; prioritizing; budgeting; **concept & detail design**; construction; operation and maintenance; decommissioning

• **Structural design standards** in turn is but one of the instruments of design
 – Serving as a *constraint* to the creative process of design
 – Addressing primarily the design of *structural elements*

⇒ This would be a *minimalist* view of the role and function of structural design standards
The opposite view is taken here:

- **Structural reliability** introduced a common theoretical basis for structural design
 - To establish a common and universal philosophy for the performance of civil engineering works
 - That goes far beyond the design of structural elements
- The full potential of such a development has not yet been realized
- Recent advances in probabilistic approach has the potential of extending such development even further
 - Risk and decision making procedures
 - Methodologies supporting the application of such procedures and extracting appropriate data
In order to develop some ideas on the potential application of SDS to provide a harmonized basis for the performance of the structural aspects of civil engineering works, an outline of a conceptual process of standards development is given:

- **Process of development**
 - *Needs* for improved standard
 - *Advances* in structural modeling and practice
 - *Reliability* based formulation of stipulations
 - *Judgment* based formulation of standard
Development of SDS: Role Players

• Needs for improved standard
 • ➔ Structural engineering industry
• Advances in structural modeling and practice
 • ➔ Research and academic community
• Reliability based formulation of stipulations
 • ➔ Task Groups
• Judgment based formulation of standard
 • ➔ Standards Committee representing
 – Researchers
 – Practitioners
Process of Development

- **Needs** for standard: improved or new
 - Regulatory environment – provide for changes
 - Structural engineering practice – *industry and profession* serving it
 - Need for improved performance
 - Capturing advances in technology

- **Advances** in structural modeling and practice
 - Structural mechanics
 - Reliability modeling
 - Construction practice

- **Reliability** based formulation of stipulations
 - Calibration of structural mechanics design models
 - For homogeneous categories of design parameters

- **Judgment** based formulation of standard
 - Experience based moderation of theoretically based stipulations
Different Approaches

• **Ad hoc approach:**
 – Consider need from present situation

• **Progressive approach:** incremental
 – Assess historical development of SDS and their theoretical basis
 – Identify next step in progressive development

• **Comprehensive approach:** top down
 – Derive principles for SDS development (detached from time)
 • Their role and function in structural engineering practice
 – Apply to development of new standard – next step
 – Consider future objectives for standards development
Example: Application of Reliability

• Incremental:
 – Appropriate stipulations are developed when a situation requiring specific reliability treatment is identified

• Comprehensive:
 – Set of situations
 • { homogeneous reliability ; differentiated reliability levels}
 – Provide internally consistent stipulations

Comments:
• In practice standards development somewhere in-between,
 – Tending towards incremental development, at least for different standards such as for structural types or materials

• Incremental development
 – (May) reach the same end result, much less efficient

• Comprehensive development
 – Extensive input in advance,
 – Better guarantee for a superior result
Progressive Steps of SDS Development

Historic view of SDS development helps to identify possibilities of taking a comprehensive view of the rationality of providing for structural performance in design, in tandem with development of structural mechanics modeling:

- Empirical design rules (safety built into rules)
- Allowable stress design (judgment based factor of safety)
- Limit states design (differentiated performance)
 - Judgment based partial factors
 - Reliability based partial factors normalized to experience
 - Extended pf-LSD \{structural types; design situations; reliability differentiation\}
- Probabilistic design
- Performance based design
- Risk based procedures – design and beyond
 - Basis for LSD \{all levels of structural performance\}
- Decision based procedures – design +
Unification of Structural Design (& SD Standards)

• A unified theory for structural performance provides the basis for
 – Treatment of a diverse set of situations {structural functions; configurations; levels of performance; materials; etc}
 – On a common basis as function {rational parameters}

Reliability based standards unified design of building ("standard") structures [= unified electromagnetic theory as physics analogy]

Risk based standards has the potential to unify diverse structures and performance levels [= grand unified theory (GUT)]

Decision based standards allowing for optimization of conflicting objectives [as idealistic as super symmetry]
Features of Ideal SDS

• Rational theoretical basis for unification: Applicable to comprehensive range of design situations; providing for \{sets of parameters\}
 – Structural types \{complexity; function (buildings; bridges; industrial; infrastructure; etc)\}
 – Structural situations \{actions; materials\}
 – Levels of structural performance \{economy; serviceability; safety; accidental; disaster; post-disaster\}
 – Levels of decision making \{life cycle\}

• Provision for treatment of external conditions and constraints:
 – Societal conditions \{economical; political; regulatory\}
 – Environmental conditions and influence \{on facility; by facility\}

• Professional considerations:
 – Optimization parameters clear for treatment at appropriate levels of complexity
Practical Limitations

- **Models** to be applied
 - Not properly developed
 - Gross error and human reliability arguably in principle not possible to be modeled
- **Data** limited and insufficient
- **Utility** scale not universal, or even appropriately formulated
 - Acceptability criteria can therefore not be established
- **Spatial dependence** of all the principal elements (E) of a high level theory E\{utility; models; data\}
 - Countries and groupings
 - Natural environment
Example: South Africa

- **Social / economic / political features**
 - Socio-economic: extreme range from an
 - advanced economy,
 - strong and fast advancing middle class to
 - utter poverty in large sectors of the nation
 - Policies: ranging from
 - progressive idealistic but unrealistic in some areas
 - very pragmatic management of the economy
 - inadequate and populist approach in some areas

- **Construction and structural engineering**
 - Large differences across different sectors
 - Buildings, industry, mining – very active
 - Infrastructure – huge backlog,
 - policies to catch up but a lack of engineering capacity (and political understanding of the role and function of engineers in the process)
Conclusions

Taking the philosophical view
 Asking (the appropriate) questions [rather than developing the appropriate answers!]
 ➔ Where do we go from here?

• Formulate a high level unifying theory
 – Risk based standards
 • Elements of risk based treatment already incorporated in recently developed standards – arguably more unified provision of accidental actions {fire; earthquake; impact; explosions; unidentified (robustness?)}
 – Rational risk criteria
 – Development of standard for risk assessment

• Appropriate procedures to support such a unifying theory
 – Methodologies demonstrated at this forum hold promise for this purpose